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Sequential Monte Carlo methods have been recently proposed to deal with the problem of acoustic source localisation and tracking
using an array of microphones. Previous implementations make use of the basic bootstrap particle filter, whereas a more general
approach involves the concept of importance sampling. In this paper, we develop a new particle filter for acoustic source localisa-
tion using importance sampling, and compare its tracking ability with that of a bootstrap algorithm proposed previously in the
literature. Experimental results obtained with simulated reverberant samples and real audio recordings demonstrate that the new
algorithm is more suitable for practical applications due to its reinitialisation capabilities, despite showing a slightly lower average
tracking accuracy. A real-time implementation of the algorithm also shows that the proposed particle filter can reliably track a
person talking in real reverberant rooms.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. INTRODUCTION

The concept of acoustic source localisation and tracking
(ASLT) plays an important role in many practical speech ac-
quisition systems. Domains of application include telecon-
ferencing, multimedia information processing, and hands-
free telephony, to name but a few. Other applications, such as
automatic speech recognition and speaker identification sys-
tems, are also very sensitive to the quality of the audio input
signals. In most cases, exact knowledge of the speaker posi-
tion is the key to acquiring clean speech using such tools as
beamforming or equalisation principles.

The multipath propagation of acoustic waves in prac-
tical environments, however, constitutes a major challenge
to overcome for any tracking algorithm. Recently, methods
based on a state-space approach (Bayesian filtering) have
been developed to deal with this problem [1–3]. Because
Bayesian filtering algorithms deliver location estimates based
on a series of past measurements rather than the current ob-
servation only, these methods are more efficient at dealing
with the spurious effects of acoustic reverberation than tra-
ditional ASLT algorithms. Also, a tracker based on state-space
filtering involves a model of the specific target dynamics, pro-
viding information regarding how the source is more likely
to evolve from one time step to the next. This enables the

tracker to effectively discriminate between observations orig-
inating from the true target and erroneous observations re-
sulting from acoustic disturbances.

Among the different methods based on Bayesian filtering,
the concept of particle filtering (PF) appears as a promising
approach to tackle the ASLT problem [2–4]. As a sequential
Monte Carlo method, the PF technique can be used to deal
with nonlinear and/or non-Gaussian problems, making it su-
perior to algorithms such as the Kalman filter and its deriva-
tives. This is of particular importance for ASLT, where the ob-
servations typically result from a nonlinear process due to the
chosen localisation procedure (such as steered beamforming
[5], cross-correlation [6], or eigenvalue decomposition [7]).
Also, the observation noise in ASLT problems is usually non-
Gaussian due to the effects of acoustic reverberation. Particle
filtering can then be used to consider several observations per
sensor in order to represent multimodal density functions
reflecting the multiple hypotheses that each of the measure-
ment modalities might originate from the target (see, e.g.,
[2]).

Previous research works on particle filtering applied to
ASLT, such as [3, 4, 8], make use of the basic bootstrap particle
filter, introduced by Gordon et al. [9]. The conceptual sim-
plicity of this algorithm leads to straightforward practical im-
plementations and moderate computational requirements.
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The bootstrap PF, however, suffers from a major drawback:
during each iteration, the particles are relocated in the state
space without knowledge of the current observations. The PF
might hence omit some important regions of the state space
when searching for the target, which mainly precludes the PF
from reinitialising after a target disappears or becomes oc-
cluded for a short period of time. Despite showing promis-
ing results, this algorithm consequently still lacks some im-
portant characteristics necessary for a smooth operation in
practical scenarios, such as the automatic detection of new
targets and the ability to recover from track loss.

In this research, we develop a particle filtering method
based on the more general concept of importance sampling
(IS), in which particles are generated during each iteration
on the basis of both the particle set at the previous time step
and the current measurement. This provides the resulting al-
gorithm with the important property of reinitialisation. Im-
portance sampling further allows the combination of differ-
ent types of observations in a global statistical framework.

The development of a robust acoustic source tracking al-
gorithm for reverberant environments is the main motiva-
tion behind the research described in this paper. In the next
section, we review the generic approach to the problem of
ASLT. The basic concepts of bootstrap filtering and impor-
tance sampling are briefly explained in Sections 3 and 4. We
then develop a particle filter for ASLT using the IS approach
in Section 5, and finally present the results of experimental
tests that demonstrate the performance of the newly pro-
posed algorithm in Section 6.

2. SOURCE TRACKING AND BAYESIAN FILTERING

Consider an array ofM acoustic sensors distributed at known
locations in a reverberant environment with known acoustic
wave propagation speed c. Assuming a single sound source,
the problem is to estimate the location of this “target” for
each time step k = 1, 2, . . . , based on the signals sm(t), m ∈
{1, . . . ,M}, provided by the array. Let Xk represent the state
variable at time k, corresponding to the position and velocity
of the target in the state space:1

Xk =
[
xk yk ẋk ẏk

]T
. (1)

At each time step, each microphone in the array delivers a
frame of audio signal which can be processed using some lo-
calisation technique such as, for instance, steered beamform-
ing (SBF) or time-delay estimation (TDE). Let Yk denote the
observation variable (or measurement) which, in the case of
ASLT, typically corresponds to the localisation information
resulting from this processing of the audio signals.

Using a Bayesian filtering approach and assuming Mark-
ovian dynamics, this system can be globally represented by

1 Note that this research focuses on a two-dimensional problem setting
where the height of the source is considered known. The developments
can however be easily generalised to handle the third dimension if neces-
sary.

means of the following two equations:

Xk = g
(
Xk−1, uk

)
, (2a)

Yk = h
(
Xk, vk

)
, (2b)

where g(·) and h(·) are possibly nonlinear functions, and
uk and vk are possibly non-Gaussian noise variables. Equa-
tion (2a) is the transition equation describing the dynam-
ics of the state variable, and (2b) is the observation equation
that determines how the measurements are obtained from
the unobserved state variable. Ultimately, one would like to
compute the so-called posterior probability density function
(PDF) p(Xk | Y1:k), where Y1:k = {Y1, . . . , Yk} represents
the concatenation of all measurements up to time k. The
posterior PDF p(Xk | Y1:k) contains all the statistical infor-
mation available regarding the current condition of the state
variable Xk. An estimate X̂k of the state then follows, for in-
stance, as the mean or the mode of this PDF.

The solution to this Bayesian filtering problem consists in
the following two steps of prediction and update [9]. Assum-
ing that the posterior density p(Xk−1 | Y1:k−1) is known at
time k − 1, the posterior PDF p(Xk | Y1:k) for the current
time step k can be computed using the following equations:

p
(
Xk | Y1:k−1

) =
∫

p
(
Xk |Xk−1

)
p
(
Xk−1 | Y1:k−1

)
dXk−1,

(3a)

p
(
Xk | Y1:k) ∝ p

(
Yk |Xk

)
p
(
Xk | Y1:k−1

)
, (3b)

where p(Xk | Y1:k−1) is the prior PDF, p(Xk | Xk−1) is the
transition density, and p(Yk | Xk) is the so-called likelihood
function.

3. BOOTSTRAP PARTICLE FILTER

Particle filtering is an approximation technique that imple-
ments the recursion of (3) by representing the posterior

density as a set of samples of the state space X(n)
k (parti-

cles) with associated likelihood weights w(n)
k , n ∈ {1, . . . ,N}.

A basic PF variant is the bootstrap filter [9] which can be
described as follows. Assume that the set of particles and
weights {(X(n)

k−1,w(n)
k−1)}Nn=1 is a discrete representation of the

posterior density p(Xk−1 | Y1:k−1). The bootstrap PF then
implements the following three iteration steps.

(1) Resampling: draw N samples X̃(n)
k−1, n ∈ {1, . . . ,N},

from the existing set of particles {X(i)
k−1}Ni=1 according

to their likelihood weights w(i)
k−1.

(2) Prediction: propagate the particles through the transi-

tion equation, X(n)
k = g(X̃(n)

k−1, uk).
(3) Update: each particle is assigned an unnormalised like-

lihood weight, w̃(n)
k = p(Yk | X(n)

k ). Then normalise
the weights so that they add up to unity:

w(n)
k = w̃(n)

k
∑N

i=1 w̃
(i)
k

. (4)
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As a result, the set of particles and weights {(X(n)
k ,w(n)

k )}Nn=1

is approximately distributed as the current posterior density
p(Xk | Y1:k). The sample set approximation of the posterior
PDF can then be obtained via

p
(
Xk | Y1:k

) ≈
N∑

n=1

w(n)
k δ

(
Xk −X(n)

k

)
, (5)

where δ(·) is the Dirac delta function, and an estimate X̂k of
the target state for the current time step k follows as

X̂k =
∫

Xk · p
(
Xk | Y1:k

)
dXk ≈

N∑

n=1

w(n)
k X(n)

k . (6)

The disadvantage of this algorithm is that during the pre-
diction step, the particles are relocated in the state space
without knowledge of the current measurement Yk . Some
regions of the state space with potentially high posterior like-
lihood might hence be omitted during the iteration, leading
to a decreased tracking performance. This drawback can be
addressed using the concept of importance sampling.

4. IMPORTANCE SAMPLING

Assuming perfect Monte Carlo sampling, let {X(n)
k }Nn=1 be a

set of N random samples drawn from the density p(Xk |
Y1:k), with uniform weightsw(n)

k = 1/N , n ∈ {1, . . . ,N}. This
sample set allows the approximate computation of any statis-
tical quantity of interest based on the PDF p(Xk | Y1:k) such
as its mean or mode, which can be used as an approximation
of the current target state. In practise, however, the posterior
density is not usually available and it is hence impossible to
sample directly from it.

An alternative solution is the use of importance sampling
(IS); see, for example, [10]. This method consists in choos-
ing a so-called importance density q(Xk | Y1:k) from which

particles are easy to sample, X(n)
k ∼ q(·). Then, for the ap-

proximation in (5) to remain a truthful representation of the
desired posterior density p(Xk | Y1:k), the computation of
the weight must be updated to (see, e.g., [11])

w(n)
k ∝

p
(
X(n)

k |Y1:k

)

q
(
X(n)

k | Y1:k

)

∝ p
(
Yk |X(n)

k

)
·
p
(
X(n)

k | Y1:k−1

)

q
(
X(n)

k | Y1:k

) ,

(7)

where the second line follows from (3b). The importance
weights are hence defined as the product of the likelihood
function and a correction term that compensates for a po-
tentially uneven distribution of the particles that might result
from the process of sampling the importance function. The
generic IS algorithm can be summarised as follows:

(1) sample N particles according to the importance func-

tion, X(n)
k ∼ q(Xk | Y1:k), n ∈ {1, . . . ,N};

(2) for each particle, compute the unnormalised impor-
tance weight as defined in (7):

w̃(n)
k = p

(
Yk |X(n)

k

)
·
p
(
X(n)

k | Y1:k−1

)

q
(
X(n)

k | Y1:k

) . (8)

Then normalise the weights according to (4).

The set of particles and weights {(X(n)
k ,w(n)

k )}Nn=1 is
then approximately distributed as the current posterior PDF
p(Xk | Y1:k), and an estimate of the current state can be
computed using (6). To emphasise the fact that the particles
are sampled here according to a specific PDF (rather than
propagated from the previous time step as in the bootstrap
implementation), the term importance particles will be used

from now on to denote the samples X(n)
k generated by draw-

ing from the importance function q(·).
Note that, although described in this work as a separate

algorithm, the bootstrap PF of Section 3 corresponds to a
special case of the IS algorithm presented here. The bootstrap
filter can indeed be derived from the IS procedure with the
simplifying assumption q(·) � p(Xk | Xk−1), emphasising
the fact that particles are sampled without taking the current
observations into account. Further information on existing
PF algorithms and other Monte Carlo methods can be found
in [10–12].

The importance sampling principle allows a decreased
estimate variance by virtue of an improved sample-based
representation. In terms of minimising the variance of the
weights, which constitutes the so-called degeneracy prob-
lem in PF implementations, the optimal importance density
qopt(·) has been shown to be [10]

qopt
(
Xk | Y1:k

)
� p

(
Xk |Xk−1, Yk

)
. (9)

It can be seen that this choice of importance density takes
into account both the previous state Xk−1 and the current
observation Yk , making the IS algorithm more robust than
the bootstrap method.

In theory, however, any density (subject to some weak as-
sumptions) could potentially be chosen as importance func-
tion, the main purpose of which is to redirect some of the
particles in regions of the state space with potentially high
posterior likelihood. In previous literature, for instance, the
importance function q(·) was implemented to take advan-
tage of measurements from auxiliary sensors (see, e.g., [13]),
which provides an efficient way of fusing data obtained from
different observations. Similarly, the algorithm presented in
[14] implements the IS method to draw on information ob-
tained from two different measurement processes derived
from the same raw data. Contrary to the method consist-
ing in combining the different observations in the represen-
tation of Yk, the IS technique hence offers a principled way
of including these in a common framework, even when the
statistical relationship between the different measurements
is not completely known or hard to determine. This specific
approach is applied here to the ASLT problem.
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5. IMPORTANCE SAMPLING FOR ASLT

5.1. Algorithm design

It can be seen that three design choices need to be made for a
practical implementation of the IS principle, regarding the
definition of the target dynamics, the likelihood function,
and the importance function. These issues are discussed in
detail below.

5.1.1. Target dynamics

In order to remain consistent with previous literature [2, 3],
a Langevin process is used to model the dynamics equa-
tion (2a). This model is typically used to characterise various
types of stochastic motion, and it has proved to be a good
choice for the current application. The source motion in each
of the Cartesian coordinates is assumed to be an independent
first-order process, which can be described by the following
equation:

Xk =

⎡

⎢
⎢
⎢
⎣

1 0 aTU 0
0 1 0 aTU

0 0 a 0
0 0 0 a

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
G

·Xk−1 + uk , (10a)

with the noise variable

uk ∼ N

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

b2T2
U 0 0 0

0 b2T2
U 0 0

0 0 b2 0
0 0 0 b2

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Q

⎞

⎟
⎟
⎟
⎠

, (10b)

where N (μ,Σ) denotes the density of a multidimensional
Gaussian random variable with mean vector μ and covari-
ance matrix Σ. The parameter TU corresponds to the time
interval separating two consecutive updates of the particle
filter. The model parameters in (10) are defined as

a = exp
(− βTU

)
,

b = v
√

1− a2,
(11)

with v the steady-state velocity parameter and β the rate con-
stant. The transition PDF p(Xk | Xk−1) then simply follows
from the noise characteristics defined in this model:

p
(
Xk |Xk−1

) = N
(
Xk; GXk−1, Q

)
, (12)

with N (α;μ,Σ) the density of a Gaussian variable with mean
μ and covariance matrix Σ evaluated at α.

5.1.2. Likelihood function

Experimental results from previous research carried out on
particle filtering for ASLT have shown that steered beam-
forming (SBF) delivers an improved tracking performance
compared to TDE-based methods [3, 15]. The SBF princi-
ple is hence used here to implement a pseudo-likelihood (PL)

function, as introduced in [3].2 With Sm(ω) = F {sm(t)},
the Fourier transform of the mth signal data, the likelihood
function is defined as the output PΩ(�) of a delay-and-sum
beamformer (DSB) steered to the location � = [x y]T, and
computed over the frequency domain Ω:

PΩ(�) =
∫

Ω

∣∣
∣
∣∣

M∑

m=1

Sm(ω) exp
(
jω
∥∥� − �m

∥∥c−1)
∣∣
∣
∣∣

2

dω, (13)

where �m = [xm ym]T is the known position of the mth
microphone. In the sequel, the likelihood function is hence
computed according to p(Yk | Xk) � PΩL (�), with the
location vector � reflecting the current state of the variable
Xk and with the integration in (13) carried out over the fre-
quency range ΩL : ω ∈ 2π · [300 Hz, 3000 Hz].

5.1.3. Importance function

The purpose of q(·) is to relocate some of the particles in
the state space taking the current observation into account,
and potentially also taking advantage of a different measure-
ment process. Rather than a fine scale and accurate represen-
tation of the particle sampling areas, the importance func-
tion is typically meant to give a coarse indication of where
the particles should be sampled in the state space. Based on
the signals received at the sensors, several principles could
be used to implement this function. The SBF output com-
puted for low frequencies is, however, known to possess these
desired properties. The SBF beam pattern at high frequen-
cies generally exhibits a narrow main lobe and suffers from
aliasing effects which typically generate spurious peaks in
the observations.3 For low frequencies, however, the alias-
ing effects are reduced and the width of the main lobe in
the beam pattern becomes more important, leading to less
accurate but also less ambiguous localisation results. Hence,
this approach is of particular interest in the context of im-
portance sampling, and the importance function is defined
here as q(·) ∝ PΩS (�), which is computed according to
(13) with the integration carried out over the frequency band
ΩS : ω ∈ 2π ·[100 Hz, 400 Hz]. Note that because the impor-
tance function is typically evaluated on a grid defined across
the entire state space (see Section 6.1), this function can be
easily normalised and it is hence not defined as a pseudoden-
sity.

5.2. Proposed IS algorithm for ASLT

The proposed IS algorithm for ASLT, which will be denoted
by SBF-IS from now on, is given in Algorithm 1. It must

2 The pseudo-likelihood is defined as a pseudodensity, which differs from
a true PDF in that it is not necessarily suitably normalised. The reader is
referred to [3, 8] for a description of the pseudo-likelihood approach.

3 Spatial aliasing is a well-known phenomenon in the microphone array
literature [16]. This effect is especially pronounced with widely spaced
microphones, which is the type of arrays considered in this work.
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Assumption: at time k − 1, the set of particles and weights
{(X(n)

k−1,w(n)
k−1)}Nn=1 is a discrete representation of the posterior

distribution p (Xk−1 | Y1:k−1).

Iteration: for each particle, that is, for n = 1, . . . ,N , choose
randomly one of the following sampling methods according
to their respective probabilities:

(A) Reinitialisation (probability PR): sample the particle
X(n)

k ∼ q (Xk | Y1:k) and compute the unnormalised

importance weight w̃(n)
k = p (Yk |X(n)

k ).
(B) Importance sampling (probability PS): sample the par-

ticle X(n)
k ∼ q (Xk | Y1:k), and compute the unnor-

malised importance weight according to (7):

w̃(n)
k = p

(
Yk |X(n)

k

)
·
p
(
X(n)

k | Y1:k−1

)

q
(
X(n)

k | Y1:k

) . (14)

(C) Bootstrap (probability 1−PR−PS): draw a sample X(i)
k−1

from the set {X(n)
k−1}Nn=1 with probability w(i)

k−1, then

propagate it through the transition equation, X(n)
k =

g (X(i)
k−1, uk). Compute the unnormalised importance

weight w̃(n)
k = p (Yk |X(n)

k ).

Finally, normalise the weights according to (4).

Result: the new set {(X(n)
k ,w(n)

k )}Nn=1 of particles and weights
is approximately distributed as the posterior density
p (Xk | Y1:k), and the current target state can be estimated
according to (6).

Algorithm 1: SBF-IS, importance sampling algorithm for ASLT.

be noted that the previously defined importance function is
only a coarse approximation of the optimal density qopt(·)
defined in (9), since it only relies on the current SBF mea-
surements. In order to generate some of the state samples on

the basis of the previous particle set {X(n)
k−1}Nn=1, a standard

bootstrap option is included in the algorithm (iteration step
(C)). Also, in a manner similar to [14], the reinitialisation
step (iteration option (A)) has been added to allow the PF
to deal efficiently with speech pauses or detect a new target
entering the scene. This procedure can be seen as a mixed-
state bootstrap step, with particles distributed according to a
combination of the original bootstrap density and the reini-
tialisation density. To this purpose, the reinitialisation den-
sity has been simply defined to be the same PDF as the im-
portance function, implicitly defining iteration option (A) of
Algorithm 1 as an importance sampling step without com-
pensation of the corresponding importance weights.

The resampling process involved in iteration step (C) of
the IS algorithm can be easily implemented using a scheme
based on a cumulative weight function [9]. Alternatively, sev-
eral other resampling methods are also available from the
particle filtering literature; see, for example, [11]. Any of
these methods may also be used to efficiently implement the

process of sampling particles from the (discrete) importance
function q(·), in steps (A) and (B) of Algorithm 1.

5.3. Discussion of practical implementation aspects

The respective probabilities of each sampling method are free
parameters in the IS algorithm. They can be determined in
various ways, including setting them to constant values, as
done in [14]. Here, these probabilities are determined at ev-
ery time step on the basis of whether the current impor-
tance function is suitable for sampling or not. Ideally, the
importance function is expected to present one peak only,
explicitly defining one single region where particles are to
be generated. If this function presents several local max-
ima, it is obviously not appropriate for single-target track-
ing. Hence, during each PF iteration, the importance func-
tion is first computed across the state space, and the number
NP of peaks above a certain threshold (defined here as 90%
of the largest measured value) is then determined. The reini-
tialisation and bootstrap probabilities are then computed as
PR = PR/NP and PS = PS/NP, where PR and PS are the prior
probabilities of each method, respectively, and have been op-
timised on the basis of practical tests as PR = 0.01 and
PS = 0.25.

In practise, the density p(X(n)
k | Y1:k−1) in the computa-

tion of the importance sampling weights (iteration step (B))
can be approximated as follows, using (3a) and (5):

p
(
X(n)

k | Y1:k−1

)
≈

N∑

i=1

w(i)
k−1p

(
X(n)

k |X(i)
k−1

)
. (15)

However, because the importance particles are sampled in
the state space in a manner that usually violates the propa-
gation model described by (10), the transition PDF p(Xk |
Xk−1) in (15) must be updated in order to allow these sam-
pled particles to be given nonzero weights. In the sequel, the
following transition PDF will be used in the implementation
of (15):

p
(
Xk |Xk−1

)
� (1− ψ) ·N

(
Xk; GXk−1, Q

)
+ ψ ·U

(
Xk

)
,

(16)

where U(·) denotes the uniform distribution (defined over
the considered state space), and the background probability
ψ is set to a small constant to account for the fact that im-
portance particles are not governed by the same dynamics
model as particles used in a standard bootstrap step. More
information about tracking models with switching parame-
ters is provided in [17].

Finally, it can be seen that the importance function
q(·) defined in Section 5.1 only contains spatial information
about the state vector Xk. As a result, the velocity component
of the importance particles is set here to some random value
upon sampling from the importance density:

⎡

⎣
ẋ(n)
k

ẏ(n)
k

⎤

⎦ ∼ N

([
0

0

]

,

[
b2 0

0 b2

])

. (17)
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6. PRACTICAL EXPERIMENTS

6.1. Experimental setup

The setup defined for the following experiments was based
on a medium-sized room measuring roughly 2.9 m×3.8 m×
2.7 m, and fitted with an array of M = 8 omnidirectional
microphones positioned at a constant height and organised
as one pair on each wall. In each pair, the distance between
the sensors was 0.6 m.

The microphone signals used in the experiments were
samples of audio data sampled at 8 kHz, either recorded in
a real office room or generated using the image method [18].
For the practical recordings, the sound source was simu-
lated with a loudspeaker moving along a predefined path
across the enclosure. The signals were split into frames of
512 samples (processed using a Hamming window), and sub-
sequently used as observation to compute both the impor-
tance and likelihood functions. The data processing was car-
ried out using a 50% overlapping factor, yielding the update
interval TU = 0.032 second. The numerical values defined for
the transition model parameters were set to v = 0.7 m/s and
β = 10 Hz.

For the SBF-IS algorithm, the importance function was
computed over a horizontal grid of points uniformly dis-
tributed across the state space with a spacing of 0.1 m.

In the following results, the performance of the IS al-
gorithm is compared to that of the SBF-PL method, a
bootstrap-only algorithm described in [3]. For both meth-
ods, the number of particles was set to N = 30. Other
algorithm-specific parameters were optimised empirically to
achieve a satisfactory tracking performance, using a reference
sample of real-audio data recorded in the environment de-
scribed above.

6.2. Tracking examples

A typical example of the tracking results achieved with the
SBF-IS algorithm is depicted in Figure 1. It contains the
plots of the estimated source position versus time result-
ing from the two PF methods. The grey lines above and
below the estimated source position represent plus/minus
one standard deviation of the particle set for both the x-
and y-coordinates. The audio data used in this example was
recorded in a real office room with reverberation time T60 =
0.39 second and average SNR 9.4 dB. The acoustic source was
moving at a constant speed along a straight line over a dis-
tance of about 1.6 m. The signal recorded with one of the ar-
ray sensors is given as an example in Figure 1(a). This practi-
cal result also demonstrates the reinitialisation capabilities of
the IS method, with the set of particles purposely initialised
in a random room location at the start of the simulation,
about 2 m away from the true start position of the target. As
soon as the source starts emitting an acoustic signal, the IS
method is able to relocate its particles towards the true source
position and subsequently tracks the target as it moves across
the state space. The non-IS filter is unable to detect the source
due to the current measurement data not being taken into

1 2 3 4 5 6 7

Time (s)

−0.2

−0.1

0

0.1

0.2

(a)

1 2 3 4 5 6 7

Time (s)

0

1

2

x-
po

si
ti

on
(m

)

(b)

1 2 3 4 5 6 7

Time (s)

0

1

2

3

y-
po

si
ti

on
(m

)

(c)

1 2 3 4 5 6 7

Time (s)

0

1

2

x-
po

si
ti

on
(m

)

(d)

1 2 3 4 5 6 7

Time (s)

0

1

2

3

y-
po

si
ti

on
(m

)

(e)

Figure 1: Tracking results obtained with an IS-based and a non-IS
method. (a) Example of signal recorded with one array sensor for
this simulation. (b)–(e) True source position (dotted lines), source
location estimate (solid lines), and lines representing ± one stan-
dard deviation of the particle set (grey lines). (b), (c) SBF-PL. (d),
(e) SBF-IS.

account when propagating the particles. The situation de-
scribed in Figure 1 typically constitutes an example of target
detection (track acquisition), for which the IS method clearly
shows its superiority over a pure bootstrap implementation.
More results on the tracking performance of algorithm SBF-
PL can be found in [3].
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Figure 2: SBF-IS tracking results with alternating conversation sce-
nario. (a) Example of audio signal generated for one of the array
sensors. Vertical dotted lines denote a change of speaker. (b), (c)
Tracking results in x- and y-coordinates. Dotted lines represent the
position of the active source.

The results depicted in Figure 2 were obtained with a sce-
nario where two speakers take part in an alternating con-
versation. The simulation was carried out using the image
method to generate signals originating from two different lo-
cations in the above mentioned setting, with a reverberation
time T60 = 0.35 second. White noise was added to the micro-
phone signals with an SNR level of about 20 dB. Figure 2(a)
shows an example of signal resulting for one of the sensors.
The vertical dotted lines represent time instants at which
a speaker change occurs in the original source signal. Fig-
ures 2(b) and 2(c) show the tracking results obtained with
the SBF-IS algorithm. This demonstrates once again the effi-
ciency of this method which automatically switches between
talkers as soon as a speech signal is detected at a different lo-
cation in the state space.

6.3. Image method results

Results presented in the previous section specifically demon-
strate the performance of the IS algorithm during the phase
of target detection, that is, in localisation mode. This section
deals with a more specific assessment of the PF operating in
tracking mode only. To this purpose, the particles were ini-
tialised at the true source location at the beginning of each
simulation in the following results.

For this experiment, the microphone signals were gen-
erated with the image method [18] for varying values of re-
verberation time T60. White noise was added to the resulting
signals with an approximate SNR level of 20 dB. A single ex-
ample of target trajectory and source signal was considered,
with a path corresponding to a 1.6 m straight line across the
room. The source signal was a sentence uttered by a male
speaker, defining a 7.3- second audio sample.

The results presented in Figure 3 were obtained by simu-
lating each PF algorithm 100 times for the considered audio
data. For each run, an estimate of the tracking accuracy was
computed as the average deviation (root mean squared error
(RMSE)) of the PF location estimate from the true source
trajectory. The statistical distribution of this assessment pa-
rameter (for each value of T60) is plotted in Figure 3 using
a boxplot representation, which contains information about
interquartile range and median of the RMSE data set.

For low to medium reverberation times, that is, up to
T60 ≈ 0.6 second, these results show that the median track-
ing accuracy of both IS-based and non-IS methods is sim-
ilar. Simulation runs for which the PF does not recover af-
ter losing track of the target result in the appearance of a
second mode in the distribution of the RMSE parameter.
This effect can be seen easily in the SBF-PL results for re-
verberation times greater than about 0.4 second, whereas the
reinitialisation capabilities of the SBF-IS method allow such
cases to be mostly avoided. On the other hand, SBF-IS al-
gorithm exhibits distributions of the RMSE results that are
more spread out: the outliers appear here as the tail of the dis-
tribution rather than a separate mode. This results from the
SBF-IS algorithm occasionally reinitialising off-track (i.e., er-
roneously) and then recovering, rather than due to a com-
plete and definitive loss of the target as with SBF-PL.

6.4. Further discussion

When designing any tracking algorithm, a compromise must
be found between its localisation ability and its tracking ac-
curacy. With the proposed IS algorithm, this can be achieved
very efficiently by tuning the prior probabilities of the reini-
tialisation and importance sampling options, PR and PS, re-
spectively. A bootstrap implementation constitutes an ex-
treme limit in this tradeoff with PR = PS = 0.

On the basis of a (nonoptimised) Matlab implemen-
tation, it can be seen that the SBF-IS algorithm requires
roughly twice more computational power than SBF-PL to
process the same amount of input data. This is of course due
to the additional task of computing the importance function
over a fixed grid of points across the state space. However,
a real-time implementation of the SBF-IS algorithm, run-
ning on a 1.7 GHz computer in conjunction with a 16-sensor
array, shows that this additional processing power require-
ment does not represent any difficulties for modern desktop
computers. Given this hardware setup, the number of par-
ticles in the IS algorithm can be increased up to 120 before
reaching the limits of the system resources, which proves to
be more than sufficient for the considered application. This
practical implementation demonstrates the robustness of the
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Figure 3: Statistical tracking performance results obtained with
simulated reverberant data (image method) for various levels of re-
verberation. In each boxplot, the dots represent RMSE data points,
the lines at the top and bottom of the box correspond to the 75th
and 25th percentile of the data set, respectively, and the horizon-
tal line in the middle of the box is the median of the data set. (a)
SBF-PL. (b) SBF-IS.

IS algorithm when localising sources and tracking fast tar-
get motions in the setting of a 3.5 m × 4.5 m × 2.7 m office
room with a practically measured reverberation time T60 =
0.5 second. Demonstration movies (originally recorded in
real time) showing some typical examples of the IS algorithm
output delivered by this implementation can be found online
at DOI 10.1155/ASP/2006/17021.

Finally, it must be kept in mind that the tracking per-
formance of the IS method developed in this paper can be
potentially largely improved by using some additional infor-
mation (such as, e.g., voice activity detection) to adjust the
reinitialisation probability PR. The use of a more elaborate
beamforming principle providing improved localisation es-
timates would also lead to a better tracking performance.

7. CONCLUSION

Speaker localisation and tracking are complicated array pro-
cessing applications, made especially challenging by complex
reverberation effects and the discontinued nature of speech
signals. Adopting a Bayesian filtering approach to this prob-
lem leads to superior tracking performance compared to tra-
ditional acoustic localisation methods. In this paper, we have
developed a particle filtering technique using the principle of
importance sampling. The resulting algorithm is able to au-
tomatically recover from track loss, detect a new source en-
tering the acoustic scene, and switch between speakers taking
turns, thus making it more suitable than bootstrap methods
in practise. In a practical tracking system, a bootstrap-only

algorithm would typically necessitate additional processing
units to deal with such scenarios, whereas the IS method al-
ready integrates these functionalities at a low level in the al-
gorithm.
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